Welcome to IAFI’s “Question Corner”!
Answers may be found here

Do you have an Ice Age Floods-related question? We might have an answer!

Use the form at the bottom of the page to submit a short article, field trip description, or to share some geologic problem or site.
We’ll love to help you share it (anonmously) with others!

Question Corner Articles

Key Archives

First Peoples Ice-Free Corridor Migration to Americas Reexamined

Analysis of how long erratics have been exposed on ice-free ground in the hypothesized “Late Pleistocene ice-free corridor migration route” suggests that route was not fully open until about 13,800 years ago, and the ice sheets “may have been 1,500 to 3,000 feet (455 to 910 m) high in the area where they covered the ice-free corridor,” according to study lead author Jorie Clark, a geologist and archaeologist at Oregon State University. Clark said, “we now have robust evidence that the ice-free corridor was not open and available for the [Late Pleistocene] first peopling of the Americas.” If evidence of humans in the Americas prior to the 30,000 years ago is ultimately found, that evidence does not preclude the possibility of ice-free corridor migration before closure of the corridor. 

Read More »
Newsletter

Geology Experts Find Evidence of Dual Mass Extinctions 260 Million Years Ago

Long before dinosaurs, Earth was dominated by animals that were in many ways even more incredible. Carnivores such as Titanophoneus, or “titanic murderer,” stalked enormous armored reptiles the size of buffalo. Many of these animals died out in a mass extinction during the Capitanian Age approximately 260 million years ago. Now an international team of researchers says evidence suggests this mass extinction was not a single event but two, separated by nearly 3 million years. Both were caused by the same culprit: massive volcanic eruptions. By studying uranium isotope profiles of marine samples collected in the South China Sea, scientists identified two “pulses” in which the oceans became deprived of life-giving oxygen. In a study published in the journal Earth and Planetary Science Letters, researchers say their analysis provides evidence that the oxygen-deprived oceans precipitated two mass extinctions around 259 million and 262 million years ago during the Middle Permian Period. Looming climate disaster By studying these ancient extinctions, researchers can better predict how modern-day global warming could affect the ocean’s food chain. “We are studying the biocrisis in the Permian Period, but similar warming is happening today because of human events,” said Thomas Algeo, a study co-author and University of Cincinnati professor of geosciences. “Humans are mimicking the effects of volcanic eruptions as a consequence of the release of carbon into the atmosphere.” The study was led by researcher Huyue Song at the China University of Geosciences, a former postdoctoral researcher at UC. “Today, we are facing several global change issues, including global warming, ocean hypoxia, seawater acidification and biodiversity decline, which are similar to the environmental changes during the Middle Permian biological crisis interval,” Song said. Scientists have identified the five biggest mass extinctions, including the most cataclysmic of all 252 million years ago called “the great dying” that wiped out 90% of ocean life and 70% of land animals. This disaster, too, was caused by massive volcanic activity that turned the seas into dead zones, said Algeo. “The Capitanian extinctions are not among the Big Five, but they are significant,” Algeo said. How do volcanic eruptions lead to extinctions? Algeo said massive eruptions create a brief period of cooling from ash in the upper atmosphere reflecting sunlight, followed by much longer periods of global warming. The release of massive volumes of greenhouse gases warmed the oceans. The warm surface water did not allow dissolved oxygen to reach lower depths, eventually destroying the food chain. “The ocean is teetering on the edge of anoxia,” he said of this absence of oxygen. “Dissolved oxygen has to be taken up by the surface layer and supplied to the deep ocean. But warmer water is lower density. When you increase the density differential, you prevent any overturn and there’s no way to get dissolved oxygen into the deeper layers.” One way researchers identify these massive volcanic eruptions is by looking for mercury in the sedimentary layers. “Mercury has been shown to be a useful proxy for volcanic eruptions,” Algeo said. “Large volcanic eruptions spew mercury into the atmosphere that gets carried around Earth and deposited in marine sediments.” Scientists say the volcanic eruptions that caused the great dying originated in Siberia. The eruptions that caused the twin mass extinctions in the Permian took place in southwest China in a place known as the Emeishan Large Igneous Province. Algeo said he would like to see if any terrestrial evidence supports the conclusions derived from their study of ancient oceans. He is optimistic that geology will unlock more mysteries about prehistoric life on Earth. “Over the last 40 years we’ve made tremendous strides in understanding the Earth’s past,” Algeo said. “It’s partly because we have all these new tools we can apply. And we have many more people working in this field than we had a generation ago.” Researcher Song said the dual disasters in the Permian show the devastating effects that global warming can have. “We must pay attention to these environmental issues and prevent the sixth mass extinction,” he said. Reprinted from Phys.org, article by Michael Miller, University of Cincinnati

Read More »
News

Dinosaur-Killing Asteroid May Have Had a Companion

A newly discovered crater suggests a second impact that would have triggered underwater landslides and tsunamis On its own, the dinosaur-killing asteroid had a staggering impact: Wildfires raged across the continents, tsunamis pummeled coastlines and about three-quarters of Earth’s species went extinct. But now, new evidence suggests this massive chunk of rock may have had a partner: Scientists discovered what might be an impact crater off the coast of Guinea that they say dates to 66 million years ago—around the same time as the collision that wiped out the dinosaurs. This second asteroid may have broken off from the dinosaur-killer, known as Chicxulub, or it may have been part of a closely timed impact cluster, according to a new study published in Science Advances. “A lot of people have questioned: How could the Chicxulub impact—albeit a huge one—be so globally destructive?” Veronica Bray, a planetary scientist from the University of Arizona and paper co-author, tells National Geographic’s Maya Wei-Haas. “It might be that it had help.” Researchers discovered what they dubbed the Nadir crater—named after a nearby underwater volcano—in 2020, while examining seismic survey data. “We came across a highly unusual feature,” write Bray and co-authors Uisdean Nicholson and Sean Gulick for The Conversation. “Among the flat, layered sediments of the Guinea Plateau, west of Africa, was what appeared to be a large crater, a little under 10 km wide and several hundred meters deep, buried below several hundred meters of sediment.” Nicholson, a geoscientist from Heriot-Watt University in the United Kingdom, has been interpreting such surveys for about 20 years. But he has “never seen anything like this,” he tells BBC News’ Jonathan Amos. Though scientists haven’t confirmed it was caused by an asteroid, features of Nadir, including its scale, the ratio of height to width and the height of the crater rim, are consistent with an impact origin, write the authors in The Conversation. Additionally, deposits around Nadir look like materials ejected from a crater after a collision. Computer modeling showed that to cause this impact, an asteroid would likely have been about 0.25 miles across and hit an ocean that was more than 2,600 feet deep, per The Conversation. In comparison, the Chicxulub asteroid was likely around six miles wide. Still, this second impact would have been sizable. “The energy released would have been around 1,000 times greater than that from the January 2022 eruption and tsunami in Tonga,” Bray tells BBC News. The hit would have caused shock waves equivalent to a magnitude 6.5 or 7 earthquake, which would have triggered underwater landslides and a series of tsunamis, write the authors. “The discovery of a terrestrial impact crater is always significant, because they are very rare in the geologic record,” Mark Boslough, an earth and planetary scientist at the University of New Mexico, who was not involved in the research, tells CNN’s Katie Hunt. “There are fewer than 200 confirmed impact structures on Earth and quite a few likely candidates that haven’t yet been unequivocally confirmed.” To verify that Nadir was truly formed by an asteroid strike, as well as find a precise date for the collision and determine its connection to Chicxulub, scientists will need to drill into the formation and collect samples. The team has already applied for emergency funds for this additional research, per National Geographic. The drilling could also give scientists clues about how life on Earth responded to the impact. “Part of the Nadir drilling goal is to analyze the sediment that was deposited onto Nadir over time,” Bray tells Inverse’s Kiona Smith. “When did life recover? How?” Smithsonian Magazine article by Margaret Osborne

Read More »
News

How do we know how old Earth is?

By measuring radioactive elements in rocks from Earth and other parts of the solar system, scientists can develop a timeline of our planet’s early years. Earth is roughly 4.54 billion years old. In that time, it has seen continents form and disappear, ice caps expand and retreat, and life evolve from single-celled organisms into blue whales. But how do we know Earth’s age? We start by looking inside it. “When you’re an Earth scientist who looks at a rock, it’s not just a rock; it’s like that rock has a story that you can try to decipher,” said Becky Flowers, a geologist at the University of Colorado Boulder. When minerals form out of magma or lava, they often contain traces of radioactive material, such as uranium. Over time, those radioactive elements decay, meaning they spew radiation, eventually transforming them into new, more stable elements that remain trapped inside the mineral. Take radioactive uranium-238, a common form of uranium. Its atoms will release energy until they eventually turn into lead. That process occurs at a fixed rate known as a half-life, which corresponds to the amount of time it takes for half of the atoms to decay. The half-life of uranium-238 is more than 4 billion years, meaning it takes more than 4 billion years for half of the uranium-238 in a sample to become lead. This makes it perfect for dating objects that are very, very old. By knowing these half-lives, we can calculate how old a rock is based on the ratio of the “parent” radioactive element and the “daughter” stable element — a method called radiometric dating. The mineral zircon is commonly used for radiometric dating because it contains a relatively large amount of uranium, Flowers said. Uranium-lead dating is just one type of radiometric dating. Other types use different elements; for example, radiocarbon dating, one of the most common methods, uses a radioactive isotope of carbon that has a half-life of thousands of years and is useful for dating organic matter. Using these methods, geologists have found minerals on Earth that date as far back as 4.4 billion years, meaning the planet has been around at least that long. But if scientists say Earth is more than 4.5 billion years old, where did those extra 100 million years or so come from? Earth, as mentioned, has changed a lot over billions of years, especially through processes such as plate tectonics, which shift the crust, birthing new land out of magma and subducting old land back underground. As a result, rocks from the very beginning of the planet’s history are hard to find; they’ve long since eroded or melted back into raw material. But scientists can use radiometric dating to determine the age of rocks from other parts of the solar system, too. Some meteorites contain materials that are more than 4.56 billion years old, and rocks from the moon and Mars have also been dated to around 4.5 billion years ago. Those dates are pretty close to the time scientists think the solar system started to take shape out of the cloud of gas and dust surrounding the newborn sun. And by knowing all of these relative ages, we can start to piece together a timeline of how Earth, the moon, Mars and all of the other little rocks floating around in nearby space started to form. Yet the transition from primordial dust cloud to planet Earth didn’t happen all at once but rather over millions of years, Rebecca Fischer, an Earth and planetary scientist at Harvard University, told Live Science. That means our understanding of Earth’s age will always be less about a specific year when the planet formed and more about a general sense of the era when our home planet started to take shape. By Ethan Freedman (lifes-little-mysteries ) reprinted from LiveScience.com

Read More »
Floods Feature

Moses Coulee: Unveiling the Mystery of a Colossal Ice Age Scar

Moses Coulee, a Washington state wonder, has puzzled geologists for over a century. This massive canyon, carved into solid basalt, stands as a testament to some powerful force.  The culprit? The Ice Age Floods, a series of catastrophic deluges that reshaped the landscape. If you’ve ever visited, or even just passed through Moses Coulee, you may not have been aware that this awe-inspiring coulee has been an Ice Age Floods conundrum since the time geologist J Harlen Bretz first noted it in 1922. The problem? Moses Coulee doesn’t quite fit the picture. As Bretz described it, “The head of Moses Coulee is just north of Grimes Lake. It is an abrupt termination, walled by 100 foot cliffs, identical with the features of channeled scabland which are called abandoned cataracts.” The head of the coulee ends abruptly, lacking any clear connection to the known flood paths.  Theorists proposed a missing link, a path obliterated by the Okanagan Ice Lobe, but no evidence of such a grand passage has ever been found. The mystery has persisted and become more enigmatic as Ice Age Floods research has flourished over the years: what colossal force carved this immense coulee? A new study by Gombiner and Lesemann (Geology, 2024) offers a radical new hypothesis.  They propose a surprising source for flood waters: meltwater trapped beneath the massive Okanagan Ice Lobe glacier. Imagine the giant Okanagan ice sheet pressing down on the Waterville Plateau.  Meltwater pooled in valleys beneath the ice, trapped and pressurized.  This water, according to the theory, found a surprising escape route.  Flowing through a network of hidden channels, it carved its way across intervening ridges and valleys, eventually funneling into Moses Coulee. This “tunnel channel network,” as the researchers describe it, explains the unusual path of the water.  The channels themselves, carved in basalt, climb slopes and defy normal drainage patterns.  These features, along with glacial landforms like eskers, suggest a watery escape route beneath the ice sheet. The study doesn’t rule out the role of traditional Ice Age Floods.  Water from massive glacial lakes might have also contributed to Moses Coulee’s formation by flowing along the eastern edge of the glacier. This new hypothesis could be a game-changer. It suggests a hidden world of pressurized meltwater sculpting the landscape beneath the ice.  While the debate continues, one thing is certain: Moses Coulee remains a captivating enigma, a place where the power of water and ice continues to unfold its secrets.  

Read More »
News

How Galactic Rhythms Helped Form Earth’s Continental Crust

“To see a world in a grain of sand”, the opening sentence of the poem by William Blake, is an oft-used phrase that also captures some of what geologists do. We observe the composition of mineral grains, smaller than the width of a human hair. Then, we extrapolate the chemical processes they suggest to ponder the construction of our planet itself. Now, we’ve taken that minute attention to new heights, connecting tiny grains to Earth’s place in the galactic environment. Looking out to the universe At an even larger scale, astrophysicists seek to understand the universe and our place in it. They use laws of physics to develop models that describe the orbits of astronomical objects. Although we may think of the planet’s surface as something shaped by processes entirely within Earth itself, our planet has undoubtedly felt the effects of its cosmic environment. This includes periodic changes in Earth’s orbit, variations in the Sun’s output, gamma ray bursts, and of course meteorite impacts. Just looking at the Moon and its pockmarked surface should remind us of that, given Earth is more than 80 times more massive than its gray satellite. In fact, recent work has pointed to the importance of meteorite impacts in the production of continental crust on Earth, helping to form buoyant “seeds” that floated on the outermost layer of our planet in its youth. We and our international team of colleagues have now identified a rhythm in the production of this early continental crust, and the tempo points to a truly grand driving mechanism. This work has just been published in the journal Geology. The rhythm of crust production on Earth Many rocks on Earth form from molten or semi-molten magma. This magma is derived either directly from the mantle – the predominantly solid but slowly flowing layer below the planet’s crust – or from recooking even older bits of pre-existing crust. As liquid magma cools, it eventually freezes into solid rock. Through this cooling process of magma crystallization, mineral grains grow and can trap elements such as uranium that decay over time and produce a sort of stopwatch, recording their age. Not only that, but crystals can also trap other elements that track the composition of their parental magma, like how a surname might track a person’s family. With these two pieces of information – age and composition – we can then reconstruct a timeline of crust production. Then, we can decode its main frequencies, using the mathematical wizardry of the Fourier transform. This tool basically decodes the frequency of events, much like unscrambling ingredients that have gone into the blender for a cake. Our results from this approach suggest an approximate 200-million-year rhythm to crust production on the early Earth. Our place in the cosmos But there is another process with a similar rhythm. Our Solar System and the four spiral arms of the Milky Way are both spinning around the supermassive black hole at the galaxy’s center, yet they are moving at different speeds. The spiral arms orbit at 210 kilometers per second, while the Sun is speeding along at 240km per second, meaning our Solar System is surfing into and out of the galaxy’s arms. You can think of the spiral arms as dense regions that slow the passage of stars much like a traffic jam, which only clears further down the road (or through the arm). This model results in approximately 200 million years between each entry our Solar System makes into a spiral arm of the galaxy. So, there seems to be a possible connection between the timing of crust production on Earth and the length of time it takes to orbit the galactic spiral arms – but why? Strikes from the cloud In the distant reaches of our Solar System, a cloud of icy rocky debris named the Oort cloud is thought to orbit our Sun. As the Solar System periodically moves into a spiral arm, interaction between it and the Oort cloud is proposed to dislodge material from the cloud, sending it closer to the inner Solar System. Some of this material may even strike Earth. Earth experiences relatively frequent impacts from the rocky bodies of the asteroid belt, which on average arrive at speeds of 15km per second. But comets ejected from the Oort cloud arrive much faster, on average 52km per second. We argue it is these periodic high-energy impacts that are tracked by the record of crust production preserved in tiny mineral grains. Comet impacts excavate huge volumes of Earth’s surface, leading to decompression melting of the mantle, not too dissimilar from popping a cork on a bottle of fizz. This molten rock, enriched in light elements such as silicon, aluminum, sodium, and potassium, effectively floats on the denser mantle. While there are many other ways to generate continental crust, it’s likely that impacting on our early planet formed buoyant seeds of crust. Magma produced from later geological processes would adhere to those early seeds. Harbingers of doom, or gardeners for terrestrial life? Continental crust is vital in most of Earth’s natural cycles – it interacts with water and oxygen, forming new weathered products, hosting most metals and biological carbon. Large meteorite impacts are cataclysmic events that can obliterate life. Yet, impacts may very well have been key to the development of the continental crust we live on. With the recent passage of interstellar asteroids through the Solar System, some have even gone so far as to suggest they ferried life across the cosmos. However we came to be here, it is awe-inspiring on a clear night to look up at the sky and see the stars and the structure they trace, and then look down at your feet and feel the mineral grains, rock, and continental crust below – all linked through a very grand rhythm indeed. By Chris Kirkland and Phil Sutton, THE CONVERSATION – from Science Alert

Read More »
News

Were Humans Present in the Area During the Ice Age Floods?

During the last ice age, humans ventured into two vast and completely unknown continents: North and South America. For nearly a century, researchers thought they knew how this wild journey occurred: The first people to cross the Bering Land Bridge, a massive swath of land that connected Asia with North America when sea levels were lower, were the Clovis, who made the journey shortly before 13,000 years ago. According to the Clovis First theory, every Indigenous person in the Americas could be traced to this single, inland migration, said Loren Davis, a professor of anthropology at Oregon State University. But in recent decades, several discoveries have revealed that humans first reached the so-called New World thousands of years before we initially thought and probably didn’t get there by an inland route. So who were the first Americans, and how and when did they arrive? Genetic studies suggest that the first people to arrive in the Americas descend from an ancestral group of Ancient North Siberians and East Asians that mingled around 20,000 to 23,000 years ago and crossed the Bering Land Bridge sometime between then and 15,500 years ago. Geneticists studying the first Americans tend to paint a more consistent picture than archaeologists do, mainly because they’re using the same human remains and genetic datasets. Genetic analyses have found that Ancient North Siberians and a group of East Asians paired up around 20,000 to 23,000 years ago. Soon after, the population split into two genetically distinct groups: one that stayed in Siberia, and another, the basal American branch, which emerged around 20,000 to 21,000 years ago. Genetic data suggest the descendants of this basal American branch crossed the Bering Land Bridge and became the first Americans. But some archaeological sites hint that people may have reached the Americas far earlier than that. There are fossilized human footprints in White Sands National Park in New Mexico that may date to 21,000 to 23,000 years ago. That would mean humans arrived in North America during the Last Glacial Maximum (LGM), which occurred between about 26,500 to 19,000 years ago, when ice sheets covered much of what is now Alaska, Canada and the northern U.S. Other, more equivocal data suggest the first people arrived in the Western Hemisphere by 25,000 or even 31,500, years ago. If these dates can be confirmed, they would paint a much more complex picture of how and when humans reached the Americas. Almost all scientists agree, however, that this incredible journey was made possible by the emergence of Beringia — a now-submerged, 1,100-mile-wide (1,800 kilometers) landmass that connected what is now Alaska and the Russian Far East. During the last ice age, much of Earth’s water was frozen in ice sheets, causing ocean levels to fall. Beringia surfaced once waters in the North Pacific dropped roughly 164 feet (50 meters) below today’s levels; it was passable by foot between 30,000 and 12,000 years ago. From there, the archaeological picture gets muddier. The older version of the story originated in the 1920s and 1930s, when Western archaeologists discovered sharp-edged, leaf-shaped stone spear points near Clovis, New Mexico. The people who made them, now dubbed the Clovis people, lived in North America between 13,000 and 12,700 years ago, based on a 2020 analysis of bone, charcoal and plant remains found at Clovis sites. At the time, it was thought that the Clovis traveled across Beringia and then moved through an ice-free corridor, or “a gap between the continental ice sheets,” in what is now part of Alaska and Canada. However, new discoveries have turned back the clock on the first Americans’ arrival. In 1976, researchers learned about the site of Monte Verde II in southern Chile, which radiocarbon dating showed was about 14,550 years old. It took decades for archaeologists to accept the dating of Monte Verde, but soon, other sites also pushed back the date of humans’ arrival in the Americas. The Paisley Caves in Oregon contain human coprolites, or fossilized poop, dating to about 14,500 years ago. Page-Ladson, a pre-Clovis site in Florida with stone tools and mastodon bones, dates to about 14,550 years ago. And Cooper’s Ferry — a site that includes stone tools, animal bones and charcoal — dates to around 16,000 years ago. Then, in 2021, scientists announced much more ancient traces of human occupation: fossilized footprints in White Sands, New Mexico dating to between 21,000 and 23,000 years ago. Sites such as White Sands and Cooper’s Ferry have big implications for how the first people arrived in the Americas. It’s thought that the ice-free corridor through North America didn’t fully open until about 13,800 years ago. So if humans were in the Americas long before then, they likely traveled there along the Pacific coast. That coastal journey could have been made by foot, by watercraft, or both. But no fossil or archaeological evidence of this journey has been unearthed. Ideally, archaeologists would like to find more sites from all of these branches, especially any remains that could explain the genetics behind the people at White Sands between 23,000 and 21,000 years ago. Evidence of these long-lost people can be found in the remains of the animals they butchered, the charcoal they burned, the tools they crafted and the loved ones they buried. Local Indigenous Peoples’ stories strongly suggest humans were in the area during the Ice Age Floods, but tangible scientific evidence is sparse and yet to be found in the area. Eedited from a Live Science article by Laura Geggel

Read More »
Question Corner

Rounded Boulders Spokane

Rounded Boulders in Spokane Ice Rafted Erratics? Q – I have noticed places around Spokane where there are large accumulations of similarly-size boulders. They are smooth and generally about a meter in diameter.. The type of stone varies, but none are Columbia Basin basalt. I assume these are ice-rafted erratics. My question is how did so many end up in a few locations and why are they all similarly sized? My guess is that the flood waters ran into a slope and became still enough to drop similarly-sized loads. Is that right? Or is there another explanation? The South Hill Park and Ride has 81 scattered around the site, some of which I assume were pushed out of the way for paving. Another site nearby has perhaps 40 used for a retaining wall. The Spokane Valley YMCA has a lot, as does the parking lot for the Dishman Hills Natural Area. There are also places along Trent Avenue where these stones are found. Thanks for your reply. – James VanderMeer A – Most all of the well-rounded boulders that clutter parts of the floor of the Spokane Valley are, indeed, derived from the Ice Age floods, but are probably were not ice-rafted to their present locations. They were moved by the tremendous power just downstream from the initial Ice Dam failure, rolled or bounced along the bottom of Glacial Lake Columbia and accumulated rapidly in the deeper parts of the lake. The power of the flood currents dissipated as the waters moved west. Most of the large boulders found father west were probably ice-rafted. The source for these boulders was most likely glacial moraine and stream sediments from Idaho, Montana, and Canada, thus no local basalt in the mix. Because they were “current” derived, they are often sorted in size, and derive from a source where there has been much erosion already and well rounded. More information on this can be had in the online Zoom lecture “What Happened When the Dam Burst” by the IAFI on November 24 by Michael Hamilton.

Read More »
Question Corner

Evidence Elsewhere

Evidence Elsewhere of Ice-Age Floods? Q – Is there evidence elsewhere in the world of ice age floods? Intuitively, I would think glaciers dammed other rivers, created lakes and then eventually collapsed? A – Your instincts are correct.  The rivers with big ice and big gorges pretty much all had outburst floods on them.  The St. Lawrence Seaway is a flood path as is the Strait between Denmark and Norway and the English channel at the Dover Straits.  The Altai Mountain Floods in Mongolia were very steep and fast much like Lake Missoula.  The latitude where the ice was melting on its own appears to be more susceptible to very large floods.  The Tibetan Plateau also had a series of large floods. Geologist Dr. Vic Baker has created an info-graphic comparing the scale of several terrestrial and Martian flood volumes, though not all are ice-age floods.

Read More »
Question Corner

Badger Mountain Landslide

Badger Mountain Landslide Potential? Q – With all the homes being built on and around Badger mountain in the Tri-Cities, is there any danger of landslides, similar to what is happening at Rattlesnake Hills? I’m unfamiliar with the geology there, and I understand that building homes can affect stability, but are there other likely dangers in that area that potential homebuyers/builders should be wary of? A – There have been prehistoric landslides (now stabilized) on Badger Mountain along with the other ridges nearby. These may have occurred following one more of the Ice Age floods >15k years ago. Renewed landsliding is unlikely as long as there is no significant addition of water that could load the slope and/or lubricate weak zones within, or between, basalt flows – leading to instability. Badger Mountain itself is probably safe since there has been little new development on top or on the steeper sides of the mountain. Most of the mountain is now free from future development, thanks to the Friends of Badge Mountain, who have turned most of the mountain into a preserve. (One exception is the group of new Sterling homes built at the west end of the ridge). Other unprotected ridges may not be as lucky. The cluster of new homes built on top of and along the sides of Little (East) Badger Mountain could generate stability problems, especially if excess water used for landscaping is allowed to percolate underground. There are also a number of new roads dug into the steeper north side of the ridge that potentially could undermine and destabilize the slopes above. Adding irrigation water to these slopes will only increase the likelihood of slope failure in the future. – Bruce Bjornstad

Read More »
News

Video – How Earth Has Changed in 1.8 Billion Years

Among the planets in the Solar System, Earth is unique for having plate tectonics. Mapping our planet through its long history creates a beautiful continental dance — mesmerizing in itself and a work of natural art. This is the first time Earth’s geological record has been used to look so far back in time in an attempt to map the planet over the last 40% of its history. The work, led by Xianzhi Cao from the Ocean University in China, is now published in the open-access journal Geoscience Frontiers.  Our planets rocky surface is split into fragments (plates) that grind into each other and create mountains, or split away and form chasms that are then filled with oceans. There are 4.6 billion years of plate motion to investigate, and the rocks we walk over contain the evidence for how Earth has changed over this time. This is a first attempt at mapping the last 1.8 billion years of Earth’s history – a leap forward in the scientific grand challenge to map our world. Modelling our planet’s past is essential if we’re to understand how nutrients became available to power evolution. Apart from causing earthquakes and volcanoes, plate tectonics also pushes up rocks from the deep earth into the heights of mountain ranges. This way, elements which were far underground can erode from the rocks and end up washing into rivers and oceans. From there, living things can make use of these elements. A number of critical metals – like copper and cobalt – are more soluble in oxygen-rich water. In certain conditions, these metals are then precipitated out of the solution: in short, they form ore deposits. Many metals form in the roots of volcanoes that occur along plate margins. By reconstructing where ancient plate boundaries lay through time, we can better understand the tectonic geography of the world and assist mineral explorers in finding ancient metal-rich rocks now buried under much younger mountains. Such a model will allow us to test hypotheses about Earth’s past. For example, why Earth’s climate has gone through extreme “Snowball Earth” fluctuations, or why oxygen built up in the atmosphere when it did. Indeed, it will allow us to much better understand the feedback between the deep planet and the surface systems of Earth that support life as we know it. Excerpted from a Science Alert article by Alan Collins, Professor of Geology, University of Adelaide

Read More »
Columbia River Gorge

Mima/Desert/Biscuit Mounds – An (Possible) Explanation

If you’ve visited the Rowena Crest Viewpoint at Tom McCall Preserve, west of The Dalles in the Columbia River Gorge, you may have noticed the many dome-shaped earthen  mounds that cover the Rowena Plateau. These mounds are broadly circular and are surrounded by collections of basalt rock fragments. If you’ve visited the spring wildflower mecca of Catherine Creek on the Washington side of the Gorge, you may have also wondered at what caused the stripes of black rock extending down the slopes above the area. Tens of thousands of similar soil mounds cover large areas of the high desert lands of north-central Oregon, often in swarms that number in the hundreds. These mounds can be round or elongated, can range from a dozen feet to more than 60 feet in diameter atop the rocky Columbia River Basalt bedrock, and are typically surrounded and separated from each other by rings or stripes of basalt rock fragments. The mounds also appear similar to those at Mima Mounds Natural Area Preserve near Olympia, WA. There have been many suggested causes for the creation of these mounds, from burial mounds, to Pleistocene pocket gophers, to plants or glacial sun cups trapping wind-blown sediment, to sorting by earthquake vibrations, to turbulence at the base of ice-age floods flowing over the landscape. Research by two Oregon graduate students, Clark Nelson of Oregon State University and John Baine Pyrch of Portland State University, independently came up with what may be the most likely explanation for the origins of these enigmatic features. Their theses suggest desert mounds and their rock rings formed through a process of natural sorting, where fine soil material is pushed up into mounds and associated rocks are pushed out to the edges to form rings through countless cycles of wetting/drying and freeze/thaw during the wetter and colder period of the late Pleistocene. Clark Nelson cut a trench through a mound that exposed layers of soil and volcanic ash whose lack of mixing discounts the pocket gopher theory. Nelson also found that slope angle less than or greater than 10 degrees determined whether the features would form rounded mounds vs. elongated stripes. Pyrch showed the strips to be distinct from common talus slopes, because no obvious source of rock exists at the head of the talus stripe. He also observed that rocks within these stripes are sorted, unlike talus slopes, suggesting the same ice age freeze-thaw origins as soil mounds and rock rings. You can read more detailed articles about these enigmatic features in these articles: Mystery of the Desert Mounds Great Pyramids of the Gophers: Mima Mound Mystery Solved Similar processes are also thought to be responsible for the “patterned ground” found in periglacial environs. However these various types of features may have formed, we can be certain how the few mounds in the center of the parking circle at Rowena Crest Viewpoint came to be. They were man-made during the construction of the viewpoint and made to look like the mounds that cover the Rowena Plateau. At least one origin has a definitive answer.

Read More »
Question Corner

Ice In Puget Valley

ice in puget valley Q – My daughter and family live west of Dean Kreger Rd, above Silver Lake, west of Eatonville. I tease her that her yard is gravel held together with a little sand. I believe they are close to the margin of an ice sheet but, I can’t find a map showing the margins. I’ve always been curious when I see different geology features and after watching all of Nick Zentner’s videos I’ve learned enough to be a hazard to myself and society. A – Google Search “Ice in Puget Valley”, “Vashon ice lobe”, “Glacial landforms of Puget Valley” and you will get more than you likely want! WA-DNR – Washington’s Glacial Geology WA-DNR – Glacial Landforms of the Puget Lowland Ice Thickness In Puget Sound

Read More »
News

Molten Mush Under Yellowstone Supervolcano

The mantle hotspot now under Yellowstone is thought to have been the source of the voluminous Columbia River Basalts that erupted from 17 to 6 million years ago as the North American continent passed over the hotspot, and that now underlie much of the path of the Ice Age Floods. During and since that time the hotspot cut a long and explosive path from the Oregon/Nevada/California border across the Snake River Plain, but ongoing research appears to show it to be fairly stable for at least our brief geologic time. A new study has found the amount of melted rock beneath Yellowstone’s supervolcano is far higher than previous estimates. Scientists have worked out the consistency of the magma under the Yellowstone caldera using seismic waves — and the reservoir is filled with “mush” that doesn’t pose an imminent eruption threat. While researchers say there is no sign of an imminent eruption, the discovery provides a more detailed view of what’s going on in the enormous magma chamber that sits beneath the national park. Far from a smooth blend of molten rock, magma reservoirs contain a large amount of solid rock, semi-liquid crystals, gasses and other volatile substances. This “magmatic mush” is highly dynamic but tends to burst out from deep underground when the proportion of liquid — or melt — crosses a certain threshold. Previous work suggests that eruptions typically occur when at least 50% of the space in the upper magma reservoir — a layer of flattened pockets of magma stacked on top of each other — is filled with melt. The magma reservoir beneath Yellowstone volcano consists of two chambers — a shallow reservoir near the surface that’s around 55 miles (90 kilometers) long and 25 miles (40 km) wide, and a deeper chamber that is about 4.5 times larger. While the deeper reservoir contains about 2% melt, the upper chamber contains far more: A study published in Science in December 2022 put the proportion of melt between 16% and 20%. Now, Sin-Mei Wu, a geophysicist and postdoctoral researcher with the Swiss Seismological Service at the Federal Institute of Technology (ETH) in Zurich, and colleagues have found the percentage is much higher. The team used seismic wave data to assess the texture and composition of the upper magma reservoir, which is about 3 miles (5 km) deep at Yellowstone. The results, published June 8 in the journal Earth and Planetary Science Letters, indicate the upper chamber consists of 28% melt — 8% to 12% more than the 2022 estimate, which was found with different methods, Wu said. “What we found is that the portion of liquid phase is not enough to have an imminent eruption,” Wu told Live Science. “Although we found a much higher portion of liquid than what was previously found, it’s still only up to 28%. So, to the best of our knowledge, Yellowstone will not have an imminent eruption.” Working out the proportion of liquid in magma reservoirs could help scientists evaluate the risk of volcanic eruptions elsewhere. “It’s important to understand the eruption potential, maybe not for Yellowstone so far, but you can apply the same methods to other magma systems that are more prone to eruption and to some that are already erupting,” Wu said. The methodology used for the study is “revolutionary in the detail and resolution it allowed for,” said Michael Poland, a research geophysicist and scientist-in-charge at the Yellowstone Volcano Observatory. The magma at Yellowstone and in other magmatic systems is like “mush,” Poland told Live Science in an email. “We often refer to ‘magmatic mush’ to convey a sense that it’s not a 100% molten ball, but also contains a lot of solid material — in the case of Yellowstone, way more solid than liquid material,” he added. “Maybe like a really thick lentil soup.” Despite recent breakthroughs, scientists can’t be sure what exactly lurks beneath the supervolcano, Wu said. “We are looking forward to some joint interpretation with other geophysical data to find out, for example, if we only have melt or if there is gas, volatiles, or something else that will help us understand the eruption dynamics.” From an article in Live Science by Sascha Pare

Read More »
News

The Oldest Stone Tools Ever Found in the US

Indigenous people have been in the Americas longer than archaeologists once thought. Stone tools unearthed from a rock shelter in Southern Oregon were last used more than 18,000 years ago, radiocarbon dating suggests. That makes the site one of the oldest-known human living spaces in the Americas. Buried deep beneath a layer of volcanic ash, archaeologists excavating Rimrock Draw Rockshelter found two stone scraping tools, which ancient knappers had skillfully shaped from pieces of orange agate. A residue of dried bison blood still clung to the edges of one scraper, a remnant of the last bit of work some ancient person had done with the tool before discarding it. The layer of volcanic ash above the tools had blasted out of Mount St. Helens, a few hundred kilometers north of the rock shelter, 15,000 years ago, long after the fine agate scrapers, and the people who made and used them, had been forgotten. In a layer of dirt below the volcanic ash but above the stone tools, archaeologists found broken teeth from now-extinct relatives of modern camels and bison. Radiocarbon dating on a piece of bison tooth enamel (first in 2012, and confirmed recently by more testing) suggests the teeth belonged to animals that lived about 18,250 years ago. And because those teeth were buried in a layer of dirt above the stone tools, they must have ended up in Rimrock Draw sometime after the tools. That makes the agate scraper, complete with bloody evidence of its use, more than 18,000 years old—and one of the oldest traces of human presence in North America. But the people who lived in Oregon more than 18,000 years ago almost certainly weren’t the first to call the continent home. In Idaho, the Nimiipuu (Nez Perce) know the Cooper’s Ferry archaeological site as the ancient location of a village they call Nipehe. The oldest artifacts unearthed at the site date to at least 16,000 years ago, and it looks like people lived there, at least off and on, for several thousand years after those first arrivals. To have reached Cooper’s Ferry 16,000 years ago, the ancient inhabitants of Nipehe would have had to cross Beringia, a land mass that connected what’s now Russia with what’s now Canada during the last Ice Age, when sea levels were lower. They then had to move south along the Pacific Coast of North America, skirting along the western edge of the great ice sheet, until they reached the southern edge of the ice. The ice-free corridor wouldn’t open until about 15,000 to 14,000 years ago. By then, people were already living far, far south of the ice: Archaeologists found stone tools and butchered mastodon bones submerged in a Florida sinkhole that dated back to 14,500 years ago. And in Chile, someone left behind a single footprint 14,600 years ago. Thanks to footprints on an island off the coast of what’s now British Columbia, we know that at least some people did make their way along the coasts about 13,000 years ago. But some archaeologists, like Bournemouth University’s Matthew Bennett and his colleagues, say that those coastal migrants may have found their way into a continent already home to people who arrived at least 26,000 years ago—long before the ice sheets blocked the way into North America from Asia. In the mountains of north-central Mexico, archaeologists unearthed stone tools from Chiquihuite Cave, which dated back to around 30,000 years ago. And at White Sands National Monument in New Mexico, it appears that someone walked along the ancient shoreline of Lake Otero (now long since dry) between 23,000 and 21,000 years ago, leaving behind a trail of 61 footprints. Archaeologists dated the White Sands footprints thanks to grass seeds trapped in the layers of clay and silt above and below the tracks, which helped bracket their possible age. Some archaeologists are still skeptical, partly because there are so few sites this old south of the ice sheets, but there’s enough evidence to take the claims seriously. Taken from an article by KIONA N. SMITH published in arsTechnica

Read More »
Key Archives

Bering Land Bridge Formed Surprisingly Late During Last Ice Age

By reconstructing the sea level history of the Bering Strait, scientists found that the strait remained flooded and the Bering Land Bridge connecting Asia to North America did not emerge until around 35,700 years ago, less than 10,000 years before the height of the last ice age (known as the Last Glacial Maximum), and not long before humans are thought to have begun migrating into the Americas. The new findings indicate that the growth of the ice sheets—and the resulting drop in sea level—occurred surprisingly quickly and much later in the glacial cycle than previous studies had suggested. “It means that more than 50 percent of the global ice volume at the Last Glacial Maximum grew after 46,000 years ago,” said Tamara Pico, assistant professor of Earth and planetary sciences at UC Santa Cruz and a corresponding author of the paper. “This is important for understanding the feedbacks between climate and ice sheets, because it implies that there was a substantial delay in the development of ice sheets after global temperatures dropped.” Global sea levels drop during ice ages as more and more of Earth’s water gets locked up in massive ice sheets, but the timing of these processes has been hard to pin down. During the Last Glacial Maximum, which lasted from about 26,500 to 19,000 years ago, ice sheets covered large areas of North America. Dramatically lower sea levels uncovered a vast land area known as Beringia that extended from Siberia to Alaska and supported herds of horses, mammoths, and other Pleistocene fauna. As the ice sheets melted, the Bering Strait became flooded again around 13,000 to 11,000 years ago. The new findings are interesting in relation to human migration because they shorten the time between the opening of the land bridge and the arrival of humans in the Americas. The timing of human migration into North America remains unresolved, but some studies suggest people may have lived in Beringia throughout the height of the ice age. “People may have started going across as soon as the land bridge formed,” Pico said. The new study used an analysis of nitrogen isotopes in seafloor sediments to determine when the Bering Strait was flooded during the past 46,000 years, allowing Pacific Ocean water to flow into the Arctic Ocean. First author Jesse Farmer at Princeton University led the isotope analysis, measuring nitrogen isotope ratios in the remains of marine plankton preserved in sediment cores collected from the seafloor at three locations in the western Arctic Ocean. Because of differences in the nitrogen composition of Pacific and Arctic waters, Farmer was able to identify a nitrogen isotope signature indicating when Pacific water flowed into the Arctic. Pico, whose expertise is in sea level modeling, then compared Farmer’s results with sea level models based on different scenarios for the growth of the ice sheets. “The exciting thing to me is that this provides a completely independent constraint on global sea level during this time period,” Pico said. “Some of the ice sheet histories that have been proposed differ by quite a lot, and we were able to look at what the predicted sea level would be at the Bering Strait and see which ones are consistent with the nitrogen data.” The results support recent studies indicating that global sea levels were much higher prior to the Last Glacial Maximum than previous estimates had suggested, she said. Average global sea level during the Last Glacial Maximum was about 130 meters (425 feet) lower than today. The actual sea level at a particular site such as the Bering Strait, however, depends on factors such as the deformation of the Earth’s crust by the weight of the ice sheets. “It’s like punching down on bread dough—the crust sinks under the ice and rises up around the edges,” Pico said. “Also, the ice sheets are so massive they have gravitational effects on the water. I model those processes to see how sea level would vary around the world and, in this case, to look at the Bering Strait.” The findings imply a complicated relationship between climate and global ice volume and suggest new avenues for investigating the mechanisms underlying glacial cycles. In addition to Pico and Farmer, the coauthors include Ona Underwood and Daniel Sigman at Princeton University; Rebecca Cleveland-Stout at the University of Washington; Julie Granger at the University of Connecticut; Thomas Cronin at the U.S. Geological Survey; and François Fripiat, Alfredo Martinez-Garcia, and Gerald Haug at the Max Planck Institute for Chemistry in Germany. This work was supported by the National Science Foundation. Published  in Proceedings of the National Academy of Sciences. Reprinted from UC Santa Cruz Newsletter, By Tim Stephens

Read More »

Question Corner

Ask a question of our technical committee or submit a short article for our website

  • Drop files here or
    Accepted file types: jpg, png, pdf, docx, Max. file size: 256 MB.
      You can upload multiple files, including jpg, png, pdf and docx up to a total of 256 Mb.
    • This field is for validation purposes and should be left unchanged.